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Abstract

In the framework of the Wine Database European Project, 400 wine samples from four different countries, namely Hungary, Roma-
nia, Czech Republic and South Africa, were collected and 63 chemical parameters were analyzed in order to determine the possibility to
identify the origin of a wine from its chemical content. The ability of multivariate analysis methods such as classification and regression
trees and partial least squares discriminant analysis and its uninformative variable elimination variant to achieve this classification task is
investigated and a special attention is given to variable selection. The results observed show that it is possible to obtain excellent clas-
sification rates based on the chemical content of only few parameters, such as for instance the isotopic ratios or the concentration in trace
elements.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The European Union has a leading position on the
world wine market, accounting for 60% of production
and 70% of exports in global terms. Therefore, the wine
industry forms an important part of the European Union’s
economy. However, this market is facing growing competi-
tion from imports from countries such as Bulgaria, Roma-
nia, the United States, Chile, Argentina, South Africa and
Australia. In the past years the official European wine con-
trol bodies have been more and more confronted with
imported wines which had to be judged as suspicious in
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terms of their authenticity, e.g. as regards geographical
origin.

Within the framework of the Wine Database European
Project, a data base containing 400 samples of authentic
and commercial wines from Hungary and Czech Republic,
two new European member states, Romania, a candidate
European member state, and South Africa has been cre-
ated. Commercial samples are wine samples bought on
the market while authentic samples are obtained by
micro-vinification of the grapes harvested directly from
the vineyard, which guarantees the authenticity of the geo-
graphical origin of those samples. The chemical content of
each of those samples for 63 parameters (macro and trace
elements, isotopic ratios, classical parameters, biogenic
amines) has been analyzed. Several parameters concerning
the oenological characteristics as well as the geographical
origin of each sample were also recorded.

The major aim of the project is to evaluate whether it is
possible to determine the country of origin of a wine sam-
ple, using its chemical content. Several publications con-
cerning the determination of the geographical origin of
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wines (see e.g. Christoph et al., 2004; Christoph, Ross-
mann, & Voerkelius, 2003; Gremaud, Quaile, Piantini,
Pfammatter, & Corvi, 2004) using the natural abundance
of elements and their isotopes. Here we extend this by also
taking into account the wine content in biogenic amines,
macro elements and classical parameters.

It was investigated if it is possible to discriminate
between the four countries on the basis of the chemical
data in the database. Additionally, it was the aim to inves-
tigate if discrimination models could be developed with the
authentic wines that could be used for the commercial
ones. Moreover, this article focuses on three multivariate
techniques which have only been applied rarely to authen-
ticate the origin of wine samples, namely the classification
and regression trees (CART), the partial least squares-
discriminant analysis (PLS-DA) and its uninformative
variables elimination (PLS-UVE) variant. This variant
eliminates useless, i.e. in this context non-discriminating,
variables. To this variant a step was added, which is called
PLS-UVE-SEL, the aim of which is to select a small set of
variables that is still able to achieve a good discrimination.
Therefore, one objective of the project is to obtain efficient
models which are economic in terms of the number of
required measurements.

2. Theory

A mathematical model must be built that is able to
identify from which of the four participating countries a
wine sample comes, based on the value of (some of) the
63 chemical parameters determined during the project.
In the ideal case, such a model would have the following
properties:

� The geographical origin of a sample is always deter-
mined correctly, i.e. the correct classification and predic-
tion rates are equal to 100%.
� The model needs as few parameters as possible. In an

ideal situation, only one variable would be enough.

2.1. CART

Introduced by Breimann, Friedman, Olshen, and Stone
(1984), CART is a non-parametric method, i.e. no assump-
tions about the distribution of data is required. There have
been only a few applications in chemistry (see Caetano,
Aires-de-Sousa, Daszykowski, & Vander Heyden, 2005;
Put et al., 2003). CART can deal with regression problems,
when the response y is continuous, and with classification
problems when y is discrete. In this study, our concern is
about classification and we therefore focus on this aspect
of the method.

CART yields a classification tree by splitting the data
into subsets, called nodes, which are more homogeneous
(more pure) with respect to the classes than the initial set.
The homogeneity of a node can be evaluated by means
of several different criteria such as the Gini index, the
entropy criterion or the twoing criterion (see Breimann
et al. for detailed descriptions of those indices). Although
those criteria are very similar in their principle, their differ-
ent mathematical definitions yield different trees, though
their performances are very similar, and hence the Gini
index is retained. This index reaches its minimum value
when the node contains only objects of the same class,
i.e. when the node is pure.

The splitting process starts by the division of the root
node, containing all available samples, in two. The proce-
dure is recursive, since the two child nodes obtained from
the root node are then treated as parent nodes and split
again into two subsets.

The split is done with respect to a cutoff value for the
variable that yields the purest child nodes. Depending on
whether the variable value of a given sample is lower or
higher than the cutoff value, the sample is placed in the left
or right child node. Nodes obtained after a split can be
either terminal nodes also called leaves, or parent nodes,
which are further split by CART. The splitting of nodes
continues until terminal nodes are obtained. These are
nodes that are considered sufficiently homogeneous, i.e.
all samples in the node belong to the same class, or a pre-
defined (small) number of objects in the terminal nodes is
reached.

Building the CART model requires three steps:

� First, the data recursive partitioning is carried out until
the tree perfectly describes the input data. This tree has a
large number of terminal nodes and over-fits the data.
This means that the maximal tree obtained in this way
describes perfectly the data used to build the tree but
that it may have a low predictive ability because it also
models the noise present in the data. Hence, it is essen-
tial to determine a smaller tree which is a better compro-
mise between the predictive ability and the fit to the
data. This determination must be done in the two fol-
lowing distinct steps.
� The last branches of the over-large tree size are succes-

sively cut. This procedure, called pruning, determines a
sequence of smaller trees.
� Finally, the optimal tree must be found, i.e. it must be

evaluated which of the trees obtained by pruning has
the best predictive ability for new samples. When evaluat-
ing the discrimination models, the final aim of these mod-
els must be borne in mind. This is to be able to correctly
classify new samples that were not available yet when the
model was developed. Thus it is necessary to predict how
good the classification of new samples will be. Simply ver-
ifying how many of the samples that were used to develop
the model are correctly classified often leads to an overly
optimistic classification rate. The estimation of the pre-
diction error (i.e. the misclassification rate) can be done
either by using an independent validation set or by using
cross-validation (CV). The use of an independent data set
requires more data and hence k-fold CV is usually the
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favorite method used in the development of the model
when the number of samples is not very large. In this pro-
cedure the data set is split in k subsets, (k � 1) subsets
being used to develop a CART model while the left out
subset is used to test the predictive ability of this model.
This process is repeated k times leaving out a different
subset each time and hence building k different trees.
The final error of prediction is the overall misclassifi-
cation rate for the trees of each size. Eventually, the opti-
mal tree is the simplest one among those that have a CV
error within one standard deviation error of the minimal
CV error. During this study, CART model complexity
was assessed by 10-fold CV.

When the optimal model has been chosen using the CV
procedure, it is further validated by the classification with
independent samples. Indeed, although 10-fold CV yields
an estimate of the prediction error of the model, it can
still give a too optimistic view of the quality of the dis-
crimination model and it is safer to test the performance
of the model with independent samples, for instance sam-
ples drawn from the available data with the duplex algo-
rithm (Snee, 1977). The discrimination model is then built
again with the data that were not drawn and used to pre-
dict the classification of the independent samples. This
yields what we will call the prediction rate, i.e. the num-
ber of independent samples that is correctly classified.
We will call re-substitution rate the number of samples
used to build the model that are correctly classified. Nor-
mally the prediction rate is lower than the re-substitution
rate.

2.2. PLS-DA

Regression methods can be applied to discriminant
analysis problems by encoding the class membership of
a sample as a number. However, with most methods this
approach is constrained to the problem of discrimination
between two classes encoded as 0 and 1 or �1 and +1.
Indeed, encoding three different classes with e.g. numbers
1, 2, 3 would introduce an arbitrary ordering of the clas-
ses that would suppose that samples belonging to class
no. 1 and class no. 2 are more similar to each other than
samples from class no. 1 and class no. 3. Hence, if more
than two classes are present in the data, more than one
model must usually be developed. Among the different
regression algorithms available in the literature, PLS
(Geladi & Kowalski, 1986; Sjöström, Wold, & Söder-
ström, 1986) is used during this work. The usual PLS
algorithm, called PLS1, is applied. It should be noted that
another algorithm, PLS2, could be used for more than
two classes, but we preferred PLS1 because its properties
are better known.

The PLS algorithm does not suffer from collinearity in
the data and noise can be filtered out by limiting the num-
ber of factors used by the model, which makes it perform
better in many cases than a classical Multiple Linear
Regression (MLR) model. PLS regression is a method
using latent variables, which are linear combinations of
the original variables, also called factors.

The principle of the PLS algorithm is the following. The
first PLS factor is built in order to maximize the covariance
between X and y. This means that variables that discrimi-
nate most between the two classes present in the data are
given a higher weight in the construction of the factor.
Then the variance explained by this factor is removed from
the data, and another factor, which is orthogonal to the
first, is obtained from the residuals of X and y. One latent
variable is rarely sufficient and the number of factors yield-
ing the model with best predictive ability must be deter-
mined. Indeed, a model built with too many factors
captures not only the information related to the discrimina-
tion problem but also the noise and particularities of the
calibration data. Hence, its predictive ability is not optimal.
Cross-validation is the most popular method to optimize
the number of factors of the model and to avoid the prob-
lem of over-fitting. The cross-validation procedure used for
PLS-DA is very similar to the one applied for CART: at
each iteration of the procedure, a model is made based
on (k � 1) subsets and its predictive ability is assessed on
the kth subset for all possible complexities. The CV proce-
dure used in this study for PLS is leave-one-out CV (Mar-
tens & Naes, 1989), which means that k is equal to the
number of samples used to built the model. When each
sample has been left out once, the average prediction error
of the model as a function of the number of factors is com-
puted and the model with the lowest root mean square
error of cross validation (RMSECV) is retained. Once the
optimal complexity Aopt is determined, the final PLS model
using Aopt factors can be built.

The prediction of the class membership of a new sample
is achieved by means of:

ŷnew ¼ xT
newb ð1Þ

where ŷnew (1 · 1) is the predicted value of y for the new
sample, xnew (p · 1) is a vector containing the measure-
ments of the p original variables and b (p · 1) is the vector
containing the regression coefficients associated with each
of the X variables. Since classes are encoded here as �1
or +1, the decision rule is straightforward: if ŷnew is nega-
tive then the new sample is associated to the first class
and reciprocally if ŷnew is positive then the new sample be-
longs to the second class.

2.3. PLS-UVE

PLS models always require measuring all the parameters
that were used during calibration. This constraint does not
match one of the initial requirements, which is that the ori-
gin of a sample can be determined with as few parameters
as possible. One solution to this problem is to perform var-
iable elimination and this is done in this study using
another approach called uninformative variable elimina-
tion for PLS (PLS-UVE).



Table 1
Distribution of data for the four countries

Red wines White wines Total

(a) Authentic samples

Hungary 15 34 49
Czech Republic 12 37 49
Romania 16 34 50
South Africa 14 36 50
P

57 141 198

(b) Commercial samples

Hungary 17 33 50
Czech Republic 16 29 45
Romania 13 37 50
South Africa 13 37 50
P

59 136 195
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The aim of PLS-UVE (Centner et al., 1996) is to statis-
tically identify which variables do not carry information
important for the discrimination problem and to remove
them. Indeed only a fraction of the parameters are associ-
ated with important regression coefficients. Therefore, vari-
ables with low and/or unstable regression coefficients are
likely to be uninformative and unstable and can be
removed from the model. Hence, a new PLS model using
fewer parameters than the original one can be developed.
The performances of the PLS-UVE model are better if
the variable elimination reduces the noise present in the
data, but this elimination may also slightly decrease the
predictive power of the model. The PLS-UVE algorithm
can be summarized as follows:

� The optimal complexity A of the classical PLS model is
determined on the original data X and y by cross-
validation.
� A matrix R containing q randomly artificial variables is

generated. Those variables have a very small amplitude
(10�10 for instance) and correspond to noise, i.e. they
are known to be uninformative.
� With a leave one out procedure, n different PLS models

using A factors are built on the joint matrix [X; R] and
the vector y. This yields n different regression vectors b

with dimensionality (p + q · 1).
� The mean and standard deviation of each regression

coefficient bi is computed and a stability criterion ci is
estimated:

ci ¼ meanðbiÞ=stdðbiÞ ð2Þ
� Since the last q regression coefficients are associated

with artificial uninformative variables, a cutoff value
equal to the maximum absolute value of c for the arti-
ficial variables is computed: Threshold = max(abs-
(cartif)).
� All original variables for which ci > threshold are

retained and constitute the new X matrix, Xnew.
� The final PLS model is built on Xnew and y. The com-

plexity of this new model has to be optimized again since
the elimination of uninformative variables may lead to a
reduced complexity of the model.

2.4. PLS-UVE-SEL

The number of variables that have some discriminating
power and are therefore retained by the PLS-UVE method
is often rather large. In our study, typically some 20 of the
63 variables are retained. Not all of them may be necessary
to achieve a good enough discrimination and the user may
prefer to select a smaller set of variables that still yields
acceptable performance.

This is the purpose of the selection step. The selection is
usually performed stepwise, e.g. by going from 20 variables
first to 10, checking how good the result is, if it is good
enough then trying only 5, etc.
There are several ways to make the selection, namely:

� Selection of the variables that have the highest b-values.
According to Eq. (1) these variables should have the
highest influence on y and therefore on the
discrimination.
� Selection of the variables with the most stable regression

coefficients (c-coefficients).
� Selection based on practicality, e.g. by eliminating first

those variables which are analytically the most time con-
suming to obtain.

It is of course also possible to use more than one crite-
rion during the selection. There is little or no experience
about whether selection based on b is to be preferred to
selection based on c and vice versa and therefore this point
is investigated in detail.

3. Data set

The data base constructed during the first year of the
WineDB project contains 393 wine samples from four dif-
ferent countries and is divided into two categories: authen-
tic and commercial wines (see Table 1).

The authentic samples of the European wines are from
the 2002 vintage and the commercial samples from 2001.
The authentic South African samples were harvested in
2002, the commercial ones in 2003.

For each wine sample many chemical parameters are
available, namely the concentrations of certain trace elements,
macro elements and biogenic amines, ratios of isotopes and
also the measure of so-called classical parameters such as the
concentration in glycerol, malic acid, etc. . . Some computed
oenological parameters such as the excess concentration of
sodium were added to the list of variables, as well as some
rare earth ratios. Eventually 63 parameters were available
for the discrimination of the four different countries. The list
of variables is summarized in Table 2.

A preliminary study showed that most of the parameters
are log normally distributed or at least show a more sym-
metrical distribution after log transformation. Since some



Table 2
The list of the 63 variables measured

1 Invert sugar
2 Tartaric acid
3 D-Lactic acid
4 L-Lactic acid
5 Malic acid
6 Glycerol
7 Butanediol
8 Gluconic acid
9 Shikimic acid

10 Methanol
11 Ethylacetate
12 1-Propanol
13 2-Methyl-1-propanol
14 2-Methylbutan-1-ol
15 3-Methylbutan-1-ol
16 Original malic acid
17 Na
18 Mg
19 Si
20 P
21 S
22 Cl
23 K
24 Ca
25 Na_Exc
26 Ethanolamine
27 Putrescine
28 Ethylamine
29 Li
30 B
31 Al
32 Ti
33 V
34 Cr
35 Mn
36 Fe
37 Co
38 Ni
39 Cu
40 Zn
41 As
42 Br
43 Rb
44 Sr
45 Y
46 Cd
47 Cs
48 Ba
49 Pb
50 U
51 La
52 Gd
53 Er
54 Yb
55 Ethanol (D/H)1

56 Ethanol (D/H)2

57 Ethanol d13C
58 Wine d18O
59 Gd/La
60 Er/La
61 Yb/La
62 Gd/Er
63 Er/Yb

X. Capron et al. / Food Chemistry 101 (2007) 1585–1597 1589
statistical methods assume the normal distribution of the
data, such parameters were log transformed. Additionally,
for PLS modeling, the data were autoscaled, i.e. each var-
iable has zero mean and unit variance.
4. Results

4.1. Exploratory analysis by PCA, correlations

Exploratory analysis of both data sets, authentic and
commercial, is carried out first (Fig. 1a and b) since it gives
a first idea of the complexity of the problem to solve and of
the factors that are most important in determining the var-
iance within the data.

The first three PCs describe only 46% and 43% of the
total variance present in the authentic and commercial
data, respectively. However, it is possible to draw a few
conclusions from this PCA analysis. First, the origin of
the samples is important and, in fact, the most important
factor in the chemical composition of the samples. Further
analysis (not shown) indicates that the type (red or white)
of wine is the second most important factor. South Africa
seems to be very easy to discriminate from the other coun-
tries. Indeed, South African samples form a cluster nicely
separated from the rest of the data, both for authentic sam-
ples (Fig. 1a) and commercial samples (Fig. 1b). The clus-
tering tendency is most visible for the authentic wines. In
Fig. 1a, it can be seen that South Africa, Romania and
Czechia form three distinct clusters, while Hungary over-
laps with Czechia and to a lesser extent with Romania.
Therefore we expect discrimination involving Hungarian
wines and most of all between Hungarian and Czech wines
to be the most difficult one. This is due in part to the het-
erogeneity of the Hungarian wines. In particular wines
from the Tokaj region show different patterns compared
to the other samples. For the commercial samples, no clear
cluster can be seen and a strong overlap is observed
between the three countries. However, Fig. 1b displays
only the scores of samples along the first three PCs, which
describe not even half of the data variance. As a conse-
quence, even if the discrimination is expected to be more
difficult for the commercial samples than for the authentic
ones, there may be discriminant information carried by fur-
ther PCs. Variable selection is also an important aspect of
the project and therefore it is essential to have an idea of
the correlation between the different parameters. For prac-
tical reasons, only the most important correlations between
the trace elements are shown in Fig. 2a and b.
4.2. CART

The CART method is applied to authentic and commer-
cial samples separately and the 63 available parameters are
input to the method.
4.2.1. Authentic samples

A first CART model is built to discriminate between the
four countries of the project. The tree derived from the
CART model is represented in Fig. 3a.

This first tree is built on the full data set, without any
sample left out for testing purposes. The resulting tree
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Fig. 1. PCA scores of Hungarian (s), Czech ( ), Romanian ( ) and South African ( ) samples for (a) authentic wines; (b) commercial wines.
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clearly confirms the first conclusion from PCA, i.e. South
African samples are very easy to discriminate from the
other authentic wines. Indeed, the correct re-substitution
rate achieved by CART for South Africa is 100% and uses
only the value of one isotopic ratio, namely ethanol (D/
H)1, the ratio between deuterium and hydrogen in the
CH3 group of ethanol. The boxplot of this parameter (see
Fig. 4a) shows that South African wines are indeed charac-
terized by a higher value of this isotopic ratio.

Moreover, the CART method makes it possible to find
which variables would lead to a similar discrimination as
the one achieved with the chosen parameter. In this case,
ethanol (D/H)1 could be replaced by ethanol (D/H)2, the
deuterium to hydrogen ratio in the CH2 group of ethanol,
or wine d18O, the ratio between 18O and 16O in the water of
the wine (see boxplots in Fig. 4b and c). This underlines the
importance of the isotopic measurements to discriminate
South African wines from the other samples. Further
research, when more samples are available will indicate
which of the three, or which combination of the three
parameters is to be preferred.

This first tree also shows that discrimination between
Hungary, Romania and Czech Republic is not as straight-
forward. As expected, some Hungarian samples are
wrongly classified as Romanian or Czech samples. As a
consequence, it was decided to build a second tree in order
to discriminate only between Hungarian, Romanian and
Czech authentic wines. For validation purposes, this
reduced data set is split into two independent sets by means
of the Duplex algorithm (Snee, 1977). The calibration set
contains 99 samples, i.e. 33 samples from each country,
and the test set contains 16 Hungarian, 16 Czech and 17
Romanian samples for a total of 49 wine samples. Samples
in the independent test set are not used during the elabora-
tion of the model and are used to assess the error of predic-
tion of the classification tree. The CART tree obtained
from this second model is represented in Fig. 3b. It uses
three chemical parameters to discriminate between the
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different wine samples, two trace elements (Y, U) and one
isotopic ratio (wine d18O). As expected from the PCA anal-
ysis, Romania is separated first. This is done on the basis of
the Y concentration. The two other variables are needed to
separate the Hungarian and Czech samples. In Fig. 3a, Cr
is used instead of U to discriminate between Hungarian
and Czech wines. However, CART tells us that those two
parameters have very close discriminating power, which
explains the change observed. Only three samples of the
99 are misclassified, which is equivalent to a 3% re-substi-
tution error. The prediction rate is slightly worse, 8% of
samples being misclassified. Those results are satisfying
taking into account the small number of variables used to
develop the model.

4.2.2. Commercial samples
The first CART model built on commercial data again

tries to discriminate between the four countries of the pro-
ject (Fig. 5a). As expected, South African samples are very
easy to discriminate from wine samples from eastern Euro-
pean countries.

The measurement of ethanol (D/H)1, the same isotopic
ratio as for authentic samples, is sufficient to carry out this
discrimination. As for the authentic samples ethanol (D/
H)2 and wine d18O can replace ethanol (D/H)1 to discrim-
inate South Africa from the other countries. Moreover, the
splitting values of ethanol (D/H)1 for authentic and com-
mercial samples are almost similar, 103.6 and 102.8, respec-
tively, which makes it possible to identify all South African
wine samples by comparison of this isotopic ratio with a
reference value chosen equal to 103, for instance. It can
be concluded that for this discrimination the authentic
wines are a good model for the commercial ones.

A second CART model is built for the commercial sam-
ples from the three European countries. The data is split
with the Duplex algorithm in a calibration set containing
99 samples (33 samples from each country) and a test set
consisting of 17 Hungarian, 17 Czech and 12 Romanian
samples. The obtained classification tree (Fig. 5b) uses four
parameters, namely the two of the first tree (B and wine
d18O) and additionally the trace element Pb and one bio-
genic amine (ethanolamine). The latter is particularly
important to discriminate between Hungary and the two
other countries. Seven training samples and seven test sam-
ples are misclassified when their class membership is pre-
dicted by the model, which yields a re-substitution rate of
93% and the prediction rate is 85%. The prediction rate is
relatively low but the CART tree uses only four variables,
which can explain the relatively poor predictive ability of
the model.
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Fig. 5. Classification trees obtained from CART for (a) commercial samples from the four countries; (b) commercial samples from Hungary, Romania
and Czech Republic. Bars in boxes stand for Hungarian, Romanian, Czech and South African samples, respectively.
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4.2.3. Other CART models

We tried to build CART models to discriminate between
white wines of the four countries. There are too few red
wine samples to build specific trees for those samples.
The models obtained have either the same performance
as the model built on red and white wines together in the
case of authentic samples, or behave worse in the case of
commercial samples where the prediction error increases
to 25%. This may be surprising since the classification
problem should be simplified. However fewer samples are
available for the elaboration of the model, which can
explain the lower predictive ability of the tree.

It was also checked if the CART models built with
authentic samples from Hungary, Romania and Czech
Republic can be applied to the discrimination of the com-
mercial samples, i.e. if the model built with authentic sam-
ples can discriminate between commercial samples.
However, the predictive abilities of the trees are found to
be unacceptable. Indeed, the correct prediction rates in this
situation do not exceed 36%. It is concluded that the origi-
nal hypothesis that a discrimination model for the authen-
tic wines might serve to develop a model for commercial
wines is not verified here.

For practical reasons, it can be better to work with a
limited number of types of parameters, e.g. only isotopic
ratios or isotopic ratios and elements. Modern analytical
devices measure for instance the concentration of all trace
and macro elements at the same time, which is very eco-
nomic. Therefore, CART was also applied to the situations
where only isotopic ratios or only trace and macro element
measurements are available but the performances observed
were less satisfying.

4.3. 3/PLS-DA, UVE-PLS and PLS-UVE-SEL

Since South African samples can be discriminated from
the three others in a univariate way, only the European
countries are considered further. The constraints inherent
to PLS-DA make it necessary to develop several different
models since it is not possible to discriminate more than
two classes at the same time. Two alternatives are possible:
build pair-wise discriminant models (i.e. Hungary vs.
Romania, Hungary vs. Czechia and Romania vs. Czechia,
once for authentic samples and once for commercial sam-
ples) or build one vs. all others discriminant models. The
latter is preferred here because the aim of this study is to
determine if a given wine sample originates from where it
claims to. If a wine sample is supposed to be Hungarian,
the model should discriminate between Hungary vs. {Cze-
chia + Romania}. Therefore, three different PLS-DA
models are developed: Hungary vs. {Czech Republic +
Romania}, Czech Republic vs. {Hungary + Romania},
Romania vs. {Hungary + Czech Republic}, once for
authentic data and once for commercial data. Classical
PLS and UVE-PLS models are compared in terms of
performance.

4.3.1. Authentic samples

Discrimination Romania-{Hungary + Czech Republic}:
The optimal PLS-DA model uses two PLS factors and
the correct classification and prediction rates are 99% and
100%, respectively. The PLS scores (Fig. 6) show that there
is no overlap between the two classes, though one Roma-
nian sample is very close to the border, and illustrate the
excellent discrimination results obtained.

The first PLS component separates the Romanian
from all Czech and most Hungarian samples, the second
PLS component completes the separation. The Hungarian
samples discriminated by the second PLS component are
mainly Tokaj samples and the second PLS component is
therefore due to the heterogeneity within the Hungarian
samples. The UVE-PLS approach retains 25 variables,
mainly trace elements (cf. Table 3) and the PLS model
built with these variables has the same predictive ability
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samples ( ).
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as the PLS-DA model using the whole set of parameters.
As the number of parameters retained by UVE-PLS is
usually high, those models will not be described in fur-
ther details in the remaining of this article. The next
question is whether the number of parameters can be
further reduced by the application of PLS-UVE-SEL.
Let us first consider the selection based on the stability
coefficients c.

According to c the most stable variables are La (+ all
other rare earths and Y), U and V. Because of the very
Table 3
List of the parameters retained by UVE-PLS and their stability coefficients

Variables PLS-UVE Stability

Ethanolamine 35.8
Tartaric acid 37.9
La 179.8
Er 165.6
Y 152.8
Yb 143.1
Gd 164
Original malic acid 37
Co 85.6
V 106.5
Si 39.3
Yb/La 82.5
Gd/La 74.6
U 130.6
Cu 22.8
Er/La 79.7
Sr 27.1
Li 24.2
Er/Yb 68.2
B 30.3
S 46
Gd/Er 58.4
Na 28.9
Gluconic acid 23.3
Na_Exc 30.4
high correlation between the rare earths (RE) and Y, we
count these as one variable and will do so throughout
the further analysis of the data. The selection of these
variables seems logical, when comparing it with the CART
results and the box plots, since Y and U are among the
best discriminating variables and this is also true for V.
A PLS-DA model built with Y, U, V and the RE only
uses two factors and yields re-substitution and prediction
rates of 96% and 99%, respectively. The selection on c

therefore works well. The samples that are not well classi-
fied by re-substitution or prediction are the five Hungarian
Tokaj samples that are not discriminated along the first
PLS component in Fig. 6. When only the RE + Y are
retained, a two factor PLS model results with a re-substi-
tution error of still only 4% and a prediction error of now
4% (i.e. one Tokaj sample more than when U and V are
included).

In Table 3 the variables are ranked according to their
b-coefficients. According to b the most important vari-
ables are ethanolamine, tartaric acid and La (+ all other
RE and Y). Looking at the box plots (not shown here)
the selection based on ranking according to b seems much
less logical than that based on c. Indeed, ethanolamine
appears to have no discrimination power at all. However,
when a model is built with ethanolamine, tartaric acid
and the RE + Y, a very good result is obtained since
the re-substitution error is 2% and the prediction error
0%. This seems surprising but can be explained as follows.
Variables with a high b-value and a low c-value, such as
ethanolamine have a high std dev b, since c = b/std dev
b (see Eq. (2)). This indicates that ethanolamine and tar-
taric acid are both important for only a few samples.
They are responsible for the discrimination of the Hun-
garian samples that are not separated along the first
PLS factor (and most of which were not discriminated
by the models selected on the basis of c). By going back
to the original data, it is found that the ethanolamine val-
ues for the Tokaj region are indeed lower than for the
Romanian samples.

The selection on the basis of b for two variables is not
satisfying since the model built only on ethanolamine and
tartaric acid yields unacceptable re-substitution and predic-
tion errors of 26% and 30%, respectively. Those results
could be expected since those two parameters are only
interesting to discriminate the Tokaj wine. This highlights
the fact that the selection based on b is not automatically
the best one. In fact, the best model obtained for these data
uses two parameters selected with c (U and V) and two
selected with b (ethanolamine and tartaric acid). This
model requires two factors and gives re-substitution and
prediction errors of 0% and 1%, respectively.

Discrimination Czech Republic-{Hungary + Romania}:
The best PLS-DA model requires two factors and yields
re-substitution and prediction rates of 98% and 100%,
respectively.

As expected from the PCA and CART results, the dis-
crimination between Hungary and the Czech Republic is
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the most difficult one. While there is no overlap between
the Czech and the Romanian samples, there is a slight over-
lap between Hungarian and Czech samples in the PLS
space (see Fig. 7). However, the PLS-DA model is still able
to deliver excellent predictions.

PLS-UVE allows to decrease the number of required
variables from 63 to 35. Then two PLS-DA models are
built with the five most important variables according to
b on the one hand and with the five most stable parame-
ters on the other. The former of these two models uses
two PLS factors and the correct re-substitution and pre-
diction rates are 97% and 98%, respectively. The PLS
model built with the five most stable variables, i.e.
Y + La + Gd, U, V, Cr and 3-methylbutan-1-ol gives cor-
rect re-substitution and prediction rates of 97% and 94%.
The importance of V is not expected from the CART tree
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(s) samples.
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Fig. 8. (a) PLS scores of Hungarian (s), Romanian ( ) and Czech ( ) auth
calibrated without Romanian samples no. 394 and no. 351.
but can be explained by its strong correlation with Y, the
RE and U which are important discriminating parame-
ters. In this situation, the selection based on b is better,
though it is difficult to say if the differences observed
are significant or not. The best model that could be found
uses five variables, namely U, Cr, Yb, 3-methylbutan-1-ol
and wine d18O and the re-substitution and prediction rates
are 99% and 98%, respectively, when the model uses two
factors.

Discrimination Hungary-{Czech Republic + Romania}:
The optimal PLS-DA model requires four factors. The cor-
rect re-substitution and prediction rates are both equal to
98%. Two Romanian samples have extreme characteristics
(see Fig. 8a, samples no 394 and 351) and it is decided to
discard them from the data set. The new PLS model
(Fig. 8b) built without those samples requires only two
PLS factors and the correct re-substitution and prediction
rates are equal to 97% and 98%, respectively. The first PLS
factor discriminates the Hungarian and the Romanian
wines and the second the Hungarian and the Czech
samples.

The PLS-UVE algorithm retains 21 parameters out of
63. The model built with the five most discriminating
parameters according to b gives unsatisfactory perfor-
mances. The correct re-substitution and prediction rates
are only 90% and 86%, respectively. However, the five most
stable variables (Cr, 3-methylbutan-1-ol, ethylacetate, Mn,
ratio Er/Yb) yield re-substitution and prediction rates
equal to 95% and 94%, which is acceptable considering
the low number of parameters used and the difficulty of
the discrimination.

Notice that none of the variables important according to
CART are retained here. This might be due to the fact that
the PLS factors try to find a compromise between the sep-
aration of Hungary from Czechia on the one hand and of
Hungary from Romania on the other, so that unexpected
parameters are used. The classification results could not
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entic samples along factor 1 and factor 2; (b) PLS scores from the model
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be improved by considering separate discrimination models
Hungary/Romania and Hungary/Czechia.

4.3.2. Commercial samples

Discrimination Romania-{Hungary + Czech Republic}:
A two factors PLS-DA model has a very satisfying discrim-
inating power. The correct re-substitution and prediction
rates are equal to 99% and 100%, respectively. The PLS
scores (Fig. 9) show that this discrimination is straightfor-
ward to perform.

Twenty-one parameters are retained by UVE-PLS. In
order to further reduce the number of parameters necessary
to perform the discrimination, two different models are
built. For the model built with the five most discriminating
parameters according to b (ethanolamine, Si, Cd, Zn and
Sr) two PLS factors are necessary and the correct re-substi-
tution and prediction rates are 98% and 96%, respectively.
The model built with the five variables selected according
to the value of c (Sr, Cd, B, ethanolamine and ethanol
(D/H)1) has a very similar predictive ability. The correct
re-substitution and prediction rates are 97% and 96%,
respectively. The best model is built with ethanolamine,
Sr, Cd, wine d18O and La. The correct re-substitution
and prediction rates are 99% and 100%, respectively. The
presence of La is surprising since it is not one of the most
important parameters according to either b or c.

Discrimination Czech Republic-{Hungary + Romania}:
The optimal PLS-DA model is built with two factors and
has correct re-substitution and prediction rates of 99%
and 100%, respectively. According to the UVE-PLS
approach, 16 of the 63 available variables are important
(mainly isotopic ratios and trace elements). As for the
other discriminations, two models built with only five vari-
ables are developed. The first model uses the five parame-
ters with the highest b values (Ti, Zn, Pb, wine d18O,
L-lactic acid). This model requires two factors and the cor-
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Fig. 9. PLS scores of commercial Romanian ( ), Hungarian (s) and
Czech samples ( ).
rect re-substitution and prediction rates are 97% and 90%,
respectively. The second model uses two factors and is built
with the five most stable parameters (ethanol (D/H)1, eth-
anol (D/H)2, ethanol d13C, wine d18O, Zn) and the result-
ing re-substitution and prediction rates are 95% and 83%,
respectively.

Given the importance of the isotopic values to achieve
this discrimination, a PLS-DA model is built only on the
four isotopic ratios available. This model uses two factors
and its correct re-substitution and prediction rates are
equal to 93% and 85%, respectively. This model yields clas-
sifications results very similar to the model built on the five
most stable variables since four of those variables are iso-
topic ratios, the last parameter being Zn.

The best PLS-DA model developed is built with four
parameters, i.e. Ti, Cu, wine d18O and invert sugar. This
model has correct re-substitution and prediction rates of
97% and 94%, respectively.

Discrimination Hungary-{Czech Republic + Romania}:
A PLS-DA model using three factors has a very good dis-
criminating power, the correct re-substitution and predic-
tion rates are 99% and 100%, respectively. Of the 63
initial parameters, 18 are retained by the PLS-UVE algo-
rithm. The five parameters with highest c value, namely
ethanolamine, putrescine, B, Sr and wine d18O, are used
to develop a PLS model with two factors. This model yields
correct re-substitution and prediction rates equal to 88%
and 90%, respectively. Ethanolamine, B and wine d18O
are also found in the CART tree. Sr mainly discriminates
Hungary and Romania and replaces Pb and the box plots
show that putrescine indeed has some discriminating
power. Another model using two PLS factors built with
the five parameters with highest b (ethanolamine, Ca, Ti,
P, B) gives correct re-substitution and prediction rates
equal to 93% and 85%, respectively. The best PLS-DA
model obtained is built with eight parameters: ethanol-
amine, wine d18O, P, Ca, Li, U, Sr and B. This model uses
four factors and the correct re-substitution and prediction
rates are 95% and 96%, respectively. When fewer parame-
ters are included, the number of misclassified samples
increases immediately, as shown by the models built with
only five parameters.
5. Conclusions

The analyses clearly show that South African wines are
very easy to discriminate from the wines of Eastern Eur-
ope. Indeed, the measurement of ethanol (D/H)1 is suffi-
cient to tell if a wine sample is from South Africa or not,
whether this sample is authentic or commercial. For the
commercial wines this conclusion must be viewed with
some caution since the wines are not from the same vintage
year and it is known that isotopic ratios can change very
much from year to year. However, as the same discrimina-
tion is obtained for the authentic wines which were har-
vested in the same year it seems probable that isotopic



1596 X. Capron et al. / Food Chemistry 101 (2007) 1585–1597
ratios are also of value in the discrimination of South Afri-
can commercial wines.

The discrimination of Hungarian wine samples from
Czech and Romanian ones is the most difficult one,
while the discrimination between Czech and Romanian
wines is quite straightforward. This seems to indicate
again that the difficulty of the discrimination is related
to the geographical distance between the countries of
interest.

The discriminating power of the different models is
very satisfying. CART models, though they are univariate
and use very few parameters to determine the country of
origin of a sample, yield correct prediction rates, espe-
cially for authentic samples, where three parameters are
enough to correctly identify a wine sample 92% of the
time. For commercial samples, CART does not give such
good results but the correct prediction rate of 85% is still
satisfying taking into account that only four parameters
and very simple decision rules are necessary to achieve
this performance.

With PLS discriminating models using the whole set of
63 parameters, it is possible to achieve perfect discrimina-
tion almost all the time. However, the best compromise
between economy and quality of discrimination, particu-
larly for commercial samples, is to use the UVE-PLS
approach followed by UVE-PLS-SEL.

For a minimal cost in terms of predictive power, usually
less than 5%, it is possible to achieve very good discrimina-
tion of the different wine samples. For instance, it is possi-
ble to discriminate correctly commercial samples from
Hungary, Czech Republic and Romania 97% of the time
measuring only six variables on the average.

It is not possible to conclude whether the selection of
parameters on the basis of regression coefficients b is better
than the one based on the stability coefficients c. It depends
on the discrimination considered. If both b and c are high,
then this parameter should be kept and a variable with
both low b and c values should be discarded. When b is
high and c is low, it is likely that this parameter is only
important to discriminate few samples, and depending on
the importance of those samples, it should be discarded
or not. Finally, parameters with a low b and high c are sta-
ble but with low discriminating power and hence could be
eliminated.

It must be underlined that the models described in this
article are built for the first vintage year of the project.
Since wines are depending on the vintage, it is probable
that models presented here must be updated in order to
deliver the same quality of prediction.

The discriminant models developed here for authentic
samples are not able to classify correctly commercial wine
samples. This implies that models built for authentic sam-
ples cannot be used to discriminate commercial samples.
However, this may be due to the fact that the authentic
and commercial samples are not from the same vintage
year.
This research was undertaken with the aim of evaluating
and optimizing two discriminating methods, namely
CART and PLS, with variable selection. It will be com-
pleted at a later date when more samples are available by
comparing results with those obtained by linear discrimi-
nant analysis and related methods (Vandev & Römisch,
2004) and SIMCA (Wold et al., 1983) and multivariate
range modeling.
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